
NESNE TABANLI PROGRAMLAMA-13

SINIFLAR (CLASS)

1.NESNE TABANLI PROG. GİRİŞ
Nesne Tabanlı Programlama (OOP), programlamayı daha anlaşılır, düzenli ve yeniden kullanılabilir hale getiren bir
tekniktir. Nesneler (objects) ve sınıflar (classes) kullanarak yazılım geliştirmenin temelini oluşturur.

Diyelim ki büyük bir apartmanda yaşıyoruz. Apartmanda birçok daire (nesne) var ve bu dairelerin her birinin bir kapı
numarası, büyüklüğü, odaları gibi özellikleri bulunuyor.
💡 OOP Mantığı:

Sınıf (Class) → Plan / Şablon
→ Bir apartmanın genel tasarımıdır (Tüm daireler için geçerli olan kurallar ve özellikler).
Nesne (Object) → Gerçek Dünya Örneği
→ Apartmandaki her bir daire, bu planın gerçek bir örneğidir.

Örnek:
Sınıf: "Araba" (Marka, model, hız gibi özellikleri olan bir şablon)
Nesneler: "BMW", "Toyota" gibi gerçek arabalar

1.NESNE TABANLI PROG. GİRİŞ

 bir mimari plan (sınıf) ile bu plana göre inşa edilmiş
farklı evler (nesneleri)

bir araba tasarım planı (sınıf - class) ve bu plana göre
üretilmiş farklı araba modelleri (nesneler - objects)

a) Soyutlama (Abstraction): Karmaşıklığın
azaltılması anlamına gelir. Örneğin
otomobillerde gaz pedalına basıldığında
otomobil hızlanır ancak arka planda olan
bitenler çoğu kişi için önemsizdir.
**** Sınıflar - Nesneler Oluşturma

1.1. N.T.P. PRENSİPLERİ

b) Sarmalama veya Kapsülleme
(Encapsulation): Sadece istenilen bilgilerin
dış dünyaya açılması, hassas veya özel
bilgilerin gizlenmesi anlamına gelir. “Banka
hesabına para yatır.” komutu verildikten
sonra T.C. Kimlik Numarası ve şifre
bilgilerinin gizlenmesi buna örnek
verilebilir.

Kapsülleme, verilerin korunmasını
sağlar.
Dışarıdan erişimi kontrol etmek için
private ve public gibi erişim
belirleyiciler kullanılır.

c) Kalıtım (Inheritance): Var olan özelliklerin aktarılması
anlamına gelir. Örneğin bütün kedi türlerinin dört ayaklı olması
ortak bir özelliktir. Bir Van kedisi, kedilerin tüm özelliklerini
taşırken ayrıca kendine has özellikleri de barındırır.

Kalıtım, bir sınıfın özelliklerini başka bir sınıfa aktarmasını
sağlar.
Ana sınıf (Parent Class) → Alt sınıf (Child Class) türetebilir.

1.1. N.T.P. PRENSİPLERİ
ç) Çok biçimlilik (Polymorphism): Farklı tiplere ait olan ortak
özellikleri tanımlama işlemidir. Örneğin farklı hayvan türleri farklı
sesler çıkarır zira “ses çıkarma” eylemi ortak bir özelliktir.
Aynı metodu, farklı sınıflarda farklı şekilde kullanabilme yeteneğidir.

1.1. N.T.P. PRENSİPLERİ

Özetlersek....

OOP Prensibi Tanımı
Oyun Karakteri İçin
Örneği

Gerçek Hayattan
Benzetme

Kapsülleme
(Encapsulation) 🔒

Kalıtım
(Inheritance) 🧬

Çok Biçimlilik
(Polymorphism) 🎭

Soyutlama
(Abstraction) 🎭

ETKİNLİK - 1
"Bir oyun karakteri tasarlayın!" diyerek kendi sınıfımızı oluşturmak
istesek adım adım nasıl olurdu ?

ETKİNLİK - 1

"Bir oyun karakteri tasarlayın!"
diyerek kendi sınıfımızı oluşturmak
istesek adım adım nasıl olurdu ?

1.2. SINIFLAR VE NESNELER
Dünya ve çevre incelendiğinde her şeyin (cisimler, canlılar vb.) belirli özelliklerinin ve işlevlerinin olduğu görülür. Her
öğrencinin bir numarası, adı soyadı, aldığı dersler gibi özellikleri ve okula gitme, sınava girme gibi işlevleri vardır. Benzer
şekilde yine bir cep telefonunun rengi, boyutları, markası, adı gibi özellikleri ve çağrı başlatma, mesaj gönderme,
uygulama açma gibi işlevleri bulunur.

NTP, dünyada var olan her şeyin yazılım içinde modellenmesini amaçlar. Sınıf (class), NTP’nin en önemli kavramıdır.
Sınıf, nesnelerin özelliklerini ve işlevlerini (davranışlarını) tanımlamak için kullanılan bir taslaktır. Bu taslak aracılığıyla
nesneler (objects) oluşturulur

Programlamada bu ev planına
sınıf, ev planından yola çıkılarak
yapılan gerçek eve ise nesne adı
verilebilir

1.2.1 SINIF TANIMLAMA

1.2.2. NESNE OLUŞTURMA
Programlarda sınıfların kullanılabilmesi için bu sınıftan oluşturulan nesnelere (object) gereksinim duyulur. Bu türetme
işlemine örnek oluşturma (instance) denir.
 C#’ta önceden tanımlanan bir sınıftan nesne türetmek için new anahtar kelimesi kullanılır. Daha önceden oluşturulan
Dikdortgen sınıfından bir nesne türetmek ve bu nesnenin ögelerini (özellikler ve metotlar) kullanmak için aşağıdaki gibi
bir uygulaması yazılabilir.

1.2.2. NESNE OLUŞTURMA

Oluşturulan nesnenin adı “yenid” dir. Kenar uzunlukları a ve b olarak belirlenmiştir.
Nesnenin ögelerine erişmek için nokta (.) karakterinin kullanıldığı görülür. Genel bir ifadeyle yazılacak olursa nesne
aşağıdaki gibi tanımlanır

ETKİNLİK 2

ETKİNLİK -3

ETKİNLİK -3

Bir dikdörtgenin iki kenar uzunluğu
bilgisi bulunur. Ayrıca çevre ve alan
bilgilerinin hesabı da söz konusudur. Sınıf
tanımında a ve b değişkenleri
dikdörtgenin kenar uzunluklarını
saklamak için, AlanHesapla() ve
CevreHesapla() işlevleri de dikdörtgenin
alan ve çevre hesabının yapılması için
tanımlanmıştır.

ETKİNLİK-4

ETKİNLİK-4

1.3. KAPSÜLLEME, ALANLAR VE
ÖZELLİKLERErişim belirleyicileri ile NTP’nin temel prensiplerinden olan kapsülleme, alanlar ve özellikler aracılığıyla programlarda

uygulanır. Kapsülleme, hassas veya özel bilgilerin gizlenmesi anlamına gelir.

Kapsülleme, verilerin korunmasını sağlar.
Dışarıdan erişimi kontrol etmek için private ve public gibi erişim belirleyiciler kullanılır.

 ERİŞİM BELİRLEYİCİLER (ACCESS MODIFIERS) : .NET platformunda oluşturulan uygulamalarda güvenliği
artırmak amacıyla sınıflara ve/veya sınıf içinde kullanılan ögelere erişimin kısıtlanması gerekir. Dolayısıyla koda dışarıdan
erişimin sınırlarını belirlemek amacıyla erişim belirleyicileri kullanılır. C# programlama dilinde kullanılan erişim
belirleyicileri şunlardır

public (Genel): Public olarak tanımlanan ögeler üzerinde herhangi bir
kısıtlama yoktur. Her yerden erişilebilirdir.
private (Gizli): En katı erişim belirleyicidir. Ögeler sadece tanımlandığı sınıf
içinde erişilebilirdir. Bir başka deyişle ögeler sadece tanımlandığı küme
parantezleri arasında kullanılabilir.
protected (Korunumlu): Ögeler, bulunduğu sınıf içinde ya da bu sınıftan
türeyen diğer sınıflarda erişilebilirdir.
internal (Dâhilî): Internal olarak tanımlanan ögelere sadece aynı program
içinden erişilebilir.

protected internal (Dâhilî+Korumalı): Ögeler hem protected hem de internal
erişim belirleyicisine sahip olarak değerlendirilir. Türetilen sınıfın farklı
program içinde olması sorun teşkil etmez

1.3.1 ERİŞİM BELİRLEYİCİLER (ACCESS MODIFIERS)

Bir evi düşünelim. Bu evin farklı odaları var ve her odaya herkesin girebilmesi mümkün değil! Bazı kapılar kilitli, bazıları açık, bazıları
sadece aile bireyleri için erişilebilir.

**1️⃣ PUBLIC (HERKESE AÇIK) → ** Bahçe Kapısı 🌳
Bahçe kapısı herkese açık olduğu için isteyen herkes içeri girebilir.

**2️⃣ PRIVATE (YALNIZCA EV SAHİBİ ERİŞEBİLİR) → ** Kişisel Yatak Odası 🛏️
Yatak odası sadece senin girebildiğin özel bir alan.

**3️⃣ PROTECTED (AİLE ÜYELERİ ERİŞEBİLİR) → ** Evin Oturma Odası 🛋️
Oturma odası sadece evde yaşayanlar için kullanılabilir.

**4️⃣ INTERNAL (EVİN İÇİNDEKİ HERKES ERİŞEBİLİR) → ** Mutfak 🍽️
Mutfak, evde yaşayan herkes tarafından kullanılabilir, ama dışarıdan gelen misafirler erişemez.

**5️⃣ PROTECTED INTERNAL (AİLE VE EVİN İÇİNDEKİLER ERİŞEBİLİR) → ** Misafir Odası 🏡
Misafir odasına hem aile üyeleri hem de misafirler girebilir.

1.3.1 ERİŞİM BELİRLEYİCİLER (ACCESS MODIFIERS)

1.3.2. ALANLAR (FIELDS)
Bir alan (field), bir sınıfın içinde bulunan ve o sınıfın özelliklerini, herhangi türden (int, string vb.) saklayan bir değişkendir.

Sınıfa ait alanlar tanımlanırken başına “public”
erişim belirleyicisi yazılmıştır.
Bu erişim belirleyicisi, alan bilgisine sınıf dışından
erişim için gereklidir. Alanlar yalnızca özel ve gizli
kalması gereken değişkenler için kullanılmalıdır.
Sınıf içinde tanımlanmış bir değişkenin başına
yazılan “public” erişim belirleyicisi ile alanı dış
dünyaya açmak uygun değildir.

Bu şekilde yapıldığında değişkene değer atama ya
da değişkenin değerinin okunması işlemlerinde
kontrol mekanizması işletile

ETKİNLİK-5
Butona basınca daha önceden tanımlanan kenarlar mesaj olarak ekranda gözüksün

ETKİNLİK-6
Aşağıdaki örnek alan ve sınıf tanımlarını kodlayınız. sizde iki tane farklı konuda sınıf ve alan tanımlayınız....

1.3.3. ÖZELLİKLER (PROPERTIES)
Bir özellik (property), bir sınıfın içindeki değişkenlere (alanlara) güvenli bir şekilde erişmemizi sağlar.Bu sayede, NTP’nin
temel prensiplerinden “kapsülleme” prensibi sınıfa uygulanır.

1.3.3. ÖZELLİKLER (PROPERTIES)

Get (almak, elde etmek) ve set (düzenlemek, ayarlamak) şeklinde iki ayrı alt metodu bulunur.

get Metodu: Bir değer döndürmek için kullanılır. Özelliklerin get metodunda return anahtar kelimesi kullanılarak
 “return…;” ile bir değerin döndürüleceği belirtilir.

set Metodu: Değişkene değer atama işlemleri için kullanılır. Burada görülen value anahtar kelimesi dışarıdan
 bu özelliğe gönderilen değeri temsil eder.
 Özellikler (Properties), sınıflardaki özel alanlara (fields) güvenli bir şekilde erişmemizi sağlar.
 📌 Get ve Set metotları, bu özelliklerin nasıl okunacağını ve değiştirileceğini kontrol eder.

1.3.3. ÖZELLİKLER (PROPERTIES)

ETKİNLİK-7

ETKİNLİK-7

Yandaki kod satırları ile dışarıdan alınan bilginin
kontrolü gerçekleştirilir, sıfır veya negatif bir değer

gönderildiğinde kullanıcıya hata mesajı gösterilir

